X 410 "Business Applications of Calculus"

PROBLEM SET 1 [100 points]

PART I

As manager of a particular product line, you have data available for the past 11 sales periods. This data associates your product line's units sold " \mathbf{x} " and total PROFIT " \mathbf{P} " results for these sales periods.

Product	Red03
Units [x]	Profit [P]
10	-33986
20	-31792
100	-9200
130	790
190	21418
240	37728
300	54000
320	58208
380	65840
430	65050
500	50000

Section A: 1st Order Model

1. **[4]** Use Microsoft Excel's Chart feature to graph a plot of the data, assuming $\mathbf{P} = f(\mathbf{x})$. Add the most appropriate $\underline{1}^{\text{st}}$ order "trend line", the equation of this line, and the equation's *coefficient of determination*—its "[(R^2)]".

2. Answer the following questions using this $\underline{1}^{st}$ order model. Assume that, unless otherwise indicated, the restricted domain for "x" is $0 \le x \le 510$ units.

- a. [4] Estimate Profit "P" @ " \mathbf{x} " = 0 units and " \mathbf{x} " = 70 units.
- b. [4] Estimate how many units "x" of the product must be sold in order to generate a PROFIT of \$0.00 and a PROFIT of \$35,000.
- c. [4] Calculate how many product units "x" should be sold per sales period to *optimize* this product's PROFIT "P" <u>and</u> the value of "P" at this "x" value. Assume market constraints suggest the <u>maximum</u> number of product units that actually can be sold per sales period may not exceed...

(1). ...**510** ($0 \le x \le 510$ units). (2). ...**300** ($0 \le x \le 300$ units).

d. [4] Estimate marginal PROFIT "mP" for this product if initially...

(1). ...**480** units were sold. (2). ...**300** units were sold.

Section B: 2nd Order Model

1. **[5]** Use Microsoft Excel's Chart feature to graph a plot of the data, assuming $\mathbf{P} = f(\mathbf{x})$. Add the most appropriate 2^{nd} order "trend line", the equation of this line, the equation's *coefficient of determination*—its "[(R^2)]"—and its <u>adjusted coefficient of determination</u>—its "[$(R^2)_{adj}$]".

2. Answer the following questions using this 2^{nd} order model. Assume that, unless otherwise indicated, the restricted domain for "x" is $0 \le x \le 510$ units.

- a. [4] Estimate Profit "P" @ " \mathbf{x} " = 0 units and " \mathbf{x} " = 70 units.
- b. [4] Estimate how many units "x" of the product must be sold in order to generate a PROFIT of \$0.00 and sold in a PROFIT of \$35,000.
- c. [4] Calculate how many product units "x" should be sold per sales period to *optimize* this product's PROFIT "P" and the value of "P" at this "x" value. Assume market constraints suggest the <u>maximum</u> number of product units that actually can be sold per sales period may not exceed...
 - (1). ...**510** ($0 \le x \le 510$ units). (2). ...**300** ($0 \le x \le 300$ units).
- d. [4] Use *differential calculus* to provide an estimate of *marginal* PROFIT "*m***P**" for this product if initially...
 - (1). ...**480** units were sold. (2). ...**300** units were sold.

Section C: The Most Appropriate Model

1. [4] Identify which of the two PROFIT models derived above— 1^{st} or 2^{nd} order—is most appropriate for estimating purposes, according to the "highest percent variation explained" criterion—a criterion based on $[(R^2)]$ or $[(R^2)_{adj}]$. Based on which of the two models you feel is most appropriate, would you say that the results for the 1^{st} order or 2^{nd} order model are most realistic?

PART II

As manager of product line Blue03, you have the following data available for the past 6 sales periods. This data associates your product line's demand (units sold) " \mathbf{x} " and unit price " \mathbf{p} " results for these sales periods.

Product	Blue03
Demand [x]	Price [p]
200	800
400	900
600	500
1200	600
1600	150
2000	50

Section A: DEMAND Model Development

- 1. *Ist Order*: Use the Chart feature of Microsoft Excel[®] to help derive...
 - a. [2] ... the product's "best fitting" 1^{st} order model $\mathbf{p} = f(\mathbf{x})$.
 - b. [2] ...the model's *coefficient of determination* " $[(R^2)]$ ". <u>Then</u>, interpret the " $[(R^2)]$ " value.

2. 2^{nd} Order: If the " $[(R^2)]$ " value of the 1st order model is not "+1", use the Chart feature of Microsoft Excel[®] to help derive...

- a. [2] ... the "best fitting" *polynomial*, 2^{nd} order model $\mathbf{p} = f(\mathbf{x})$.
- b. [3] ...identify the model's *coefficient of determination* " $[(R^2)]$ ", and compute its "adjusted" *coefficient of determination* " $[(R^2)_{adj}]$ ". Then, interpret the " $[(R^2)_{adj}]$ " value.

Section B: Developing the Models to be Used in Subsequent Analyses

- 1. [3] **DEMAND**. Identify which of the DEMAND models derived above—1st order or 2nd order—best meets our course's "<u>highest percent</u> <u>variation explained</u>" criterion. Use this model to answer the questions that follow.
- 2. [3] **REVENUE**. Create the REVENUE model $\mathbf{R} = f(\mathbf{x})$ from the DEMAND model identified in "1" above.

3. [3] COST, REVENUE and PROFIT. Assume you had comparable COST "C" and units produced "x" data for the same 6 sales periods, and, after using Excel's Chart feature to develop 1st and 2nd order "trend line" equations and appropriate "[(R^2)]" values, you selected the 2nd order equation $\mathbf{C} = -0.1515(\mathbf{x})^2 + 345.01(\mathbf{x}) + 137559$ to use in further analyses. Create the PROFIT model $\mathbf{P} = f(\mathbf{x})$ from the COST model and from the REVENUE model identified in "2" above.

Section C: "Break Even", Optimization and Advanced Topics $[0 \le x \le 1,100 \text{ units}]$

- 1. [3] Calculate how many product units "x" must be produced and sold in order to generate a PROFIT of \$0.00. Assume market constraints are currently such that "x" cannot exceed 1,100 units per sales period.
- 2. [4] Determine "C" and "R" at the quantity "x" where "P" = \$0.00.
- 3. Differential calculus may be used as part of a process to develop optimization estimates for " \mathbf{R}_{max} " and " \mathbf{P}_{max} ". Based on the market constraints shown below, calculate the number of product units "x" that should be sold per sales period to <u>maximize</u> REVENUE and PROFIT ...<u>then</u>...calculate " \mathbf{R}_{max} " and " \mathbf{P}_{max} " at these "x" values.

a. [4] 1,100 units $(0 \le x \le 1,100)$. b. [4] ...850 units $(0 \le x \le 850)$.

- 4. Determine the unit price "**p**" that should be charged per sales period to *optimize* this product's "**R**" and "**P**" based on the constraints of...
 - a. [4] ...3a above $(0 \le x \le 1,100 \text{ units})$. b. [4] ...3b above $(0 \le x \le 850 \text{ units})$.
- 5. [5] Using your product line's Cost, Revenue and Profit models derived earlier, verify the following principle from economics: at the value of "x" (units produced and sold) where Profit "P" is a maximum, *marginal* Cost "mC" = marginal Revenue "mR".

- 6. Using differential calculus where necessary...
 - a. [3] ...find the value of the independent variable "x" associated with maximum *average* PROFIT " $a\mathbf{P}_{max}$ " for this product line.
 - b. [3] ...develop the product line's *marginal* PROFIT ["*m***P**" or (**P**)'] expression.
 - c. [3] ...verify the assertion from econometrics that at the value of "x" associated with a product line's " $a\mathbf{P}_{max}$ ", *average* PROFIT and *marginal* PROFIT for this product line are equal.

Extra Credit (optional)

EC1. Corporate headquarters originally set your product line's PROFIT expectation for the next sales period at \$200,000. Is this PROFIT expectation realistic? Support your answer quantitatively and/or graphically.

EC2. The "most appropriate" demand equation for a particular product is found to be $\mathbf{x} = 2,000 - 0.625(\mathbf{p})$. Develop this product's coefficient of *elasticity* expression and its Revenue equation $\mathbf{R} = f(\mathbf{p})$. Then, assuming there are no severe *domain* restrictions on price, determine the price where maximum Revenue occurs <u>and</u> the price associated with unit *elasticity* $(\mathbf{n} = -1)$. What do you observe about the two values?

[PS1(Red03Blue03)2011Jul]