Section 5.2

2. Find the volume of the solid with cross-sectional area A(x).

 $A(x) = 10e^{0.01x}, 0 \le x \le 10$

- 6. Find the volume of a pyramid of height 160 feet that has a square base of side 300 feet. These dimensions are half those of the pyramid in example 2.1. How does the volume compare?
- **10.** A dome "twice as big" as that of exercise 9 (see text) has outline $y = 120 \frac{x^2}{120}$ for $-120 \le x \le 120$ (units of feet). Find its volume.
- 12. A pottery jar has circular cross sections of radius $4 \sin \frac{x}{2}$ inches for $0 \le x \le 2\pi$. Sketch a picture of the jar and compute its volume.
- 18. Compute the volume of the solid formed by revolving the region bounded by $y = x^2$, $y = 4 x^2$ about (a) the *x*-axis; (b) y = 4.
- **20.** Compute the volume of the solid formed by revolving the region bounded by $y = x^2$ and $x = y^2$ about (a) the y-axis; (b) x = 1.
- **22.** Compute the volume (exactly if possible and estimate if necessary) of the solid formed by revolving the region bounded by y = secx,

$$y=0$$
, $x=\frac{-\pi}{4}$ and $x=\frac{\pi}{4}$ about (a) $y = 2$; (b) the *x*-axis.

- 26. Let *R* be the region bounded by $y = x^2$ and y = 4. Compute the volume of the solid formed by revolving *R* about the given line.
 - (a) y = 4 (b) the y-axis (c) y = 6
 - (d) y = -2 (e) x = 2 (f) x = -4
- 32. Suppose that the circle $x^2 + y^2 = 1$ is revolved about the y-axis. Show that the volume of the resulting solid is $\frac{4}{3}\pi$.

Section 5.3

- 4. Sketch the region, draw in a typical shell, identify the radius and height of the shell, and compute the volume for the region bounded by y = x, y = -x, and x = 1, revolved about x = 1.
- 6. Sketch the region, draw in a typical shell, identify the radius and height of the shell, and compute the volume for the region bounded by $y = x^2$ and $y = 0, -1 \le x \le 1$, revolved about x = 2.
- 8. Sketch the region, draw in a typical shell, identify the radius and height of the shell, and compute the volume for the region bounded by $x^2 + y^2 = 2y$, revolved about y = 4.
- 12. Use cylindrical shells to compute the volume of the region bounded by $x = y^2$ and x = 4, revolved about y = 2.
- 22. Use the best method available to find the volume of the region bounded by $y = 2 x^2$, y = x(x > 0) and the y-axis revolved about (a) the x-axis, (b) the y-axis, (c) x = x(x > 0)

-1, and (d) y = -1.

- **24.** Use the best method available to find the volume of the region bounded by $y = e^x 1$, y = 2 x and the x-axis revolved about the (a) *x*-axis and (b) *y*-axis.
- 26. Use the best method available to find the volume of the region bounded by $y = \sin x$ and $y = x^2$ revolved about (a) y = 1, (b) x = 1, (c) the y-axis, and (d) the x-axis.

Section 5.4

4. Approximate the length of the curve using *n* secant lines for n = 2; n = 4.

 $y = \ln x, 1 \le x \le 3$

10. Compute the arc length exactly.

$$y = \frac{1}{6}x^3 + \frac{1}{2x}, \ 1 \le x \le 3$$

14. Compute the arc length exactly.

$$y = 2\ln(4 - x^2), 0 \le x \le 1$$

30. Set up the integral for the surface area of the surface of revolution, and approximate the integral with a numerical method.

 $y = \sin x, 0 \le x \le \pi$, revolved about the *x*-axis

32. Set up the integral for the surface area of the surface of revolution, and approximate the integral with a numerical method.

$$y = x^3 - 4x, -2 \le x \le 0$$
, revolved about the *x*-axis

36. Set up the integral for the surface area of the surface of revolution, and approximate the integral with a numerical method.

 $y = \sqrt{x}, 1 \le x \le 2$, revolved about the *x*-axis