Section 5.2

2. Find the volume of the solid with cross-sectional area $A(x)$.

 $A(x) = 10e^{0.01x}, 0 \le x \le 10$

- **6. Find the volume of a pyramid of height 160 feet that has a square base of side 300 feet. These dimensions are half those of the pyramid in example 2.1. How does the volume compare?**
- **10.** A dome "twice as big" as that of exercise 9 (see text) has outline $y = 120 \frac{x^2}{120}$ for $-120 \le x \le 120$ (units of feet). Find its volume.
- **12. A** pottery jar has circular cross sections of radius $4 \sin \frac{x}{2}$ inches for $0 \le x \le 2\pi$. Sketch **a picture of the jar and compute its volume.**
- **18. Compute the volume of the solid formed by revolving the region bounded by** $y = x^2$, $y = 4 - x^2$ about (a) the *x*-axis; (b) $y = 4$.
- **20.** Compute the volume of the solid formed by revolving the region bounded by $y = x^2$ and $x = y^2$ about (a) the *y*-axis; (b) $x = 1$.
- **22. Compute the volume (exactly if possible and estimate if necessary) of the solid formed** by revolving the region bounded by $y = secx$,

y= 0,
$$
x=\frac{-\pi}{4}
$$
 and $x=\frac{\pi}{4}$ about (a) y = 2; (b) the x-axis.

- **26.** Let *R* be the region bounded by $y = x^2$ and $y = 4$. Compute the volume of the solid **formed by revolving** *R* **about the given line.**
	- (a) $y = 4$ (b) the *y*-axis (c) $y = 6$
	- (d) $y = -2$ (e) $x = 2$ (f) $x = -4$
- **32.** Suppose that the circle $x^2 + y^2 = 1$ is revolved about the *y*-axis. Show that the volume of the resulting solid is $\frac{4}{3}\pi$.

Section 5.3

- **4. Sketch the region, draw in a typical shell, identify the radius and height of the shell, and compute the volume for the region bounded by** $y = x$, $y = -x$, and $x = 1$, revolved about $x=1$.
- **6. Sketch the region, draw in a typical shell, identify the radius and height of the shell, and compute the volume for the region bounded by** $y = x^2$ and $y = 0, -1 \le x \le 1$, revolved **about** $x = 2$.
- **8. Sketch the region, draw in a typical shell, identify the radius and height of the shell, and compute the volume for the region bounded by** $x^2 + y^2 = 2y$, revolved about $y = 4$.
- **12.** Use cylindrical shells to compute the volume of the region bounded by $x = y^2$ and $x = 4$, **revolved about** $y = 2$.
- **22. Use the best method available to find the volume of the region bounded by** $y = 2 - x^2$, $y = x(x > 0)$ and the *y*-axis revolved about (a) the *x*-axis, (b) the *y*-axis, (c) $x =$

 -1 , and (d) $y = -1$.

- **24. Use the best method available to find the volume of the region bounded by** $y = e^x - 1$, $y = 2 - x$ and the x-axis revolved about the (a) *x*-axis and (b) *y*-axis.
- **26.** Use the best method available to find the volume of the region bounded by $y = \sin x$ and $y = x^2$ revolved about (a) $y = 1$, (b) $x = 1$, (c) the *y*-axis, and (d) the *x*-axis.

Section 5.4

4. Approximate the length of the curve using *n* secant lines for $n = 2$; $n = 4$.

 $y = \ln x, 1 \le x \le 3$

10. Compute the arc length exactly.

$$
y = \frac{1}{6}x^3 + \frac{1}{2x}, 1 \le x \le 3
$$

14. Compute the arc length exactly.

$$
y = 2\ln(4 - x^2), 0 \le x \le 1
$$

- **30. Set up the integral for the surface area of the surface of revolution, and approximate the integral with a numerical method.**
	- $y = \sin x$, $0 \le x \le \pi$, revolved about the *x*-axis

32. Set up the integral for the surface area of the surface of revolution, and approximate the integral with a numerical method.

$$
y = x^3 - 4x
$$
, $-2 \le x \le 0$, revolved about the *x*-axis

36. Set up the integral for the surface area of the surface of revolution, and approximate the integral with a numerical method.

 $y = \sqrt{x}$, $1 \le x \le 2$, revolved about the *x*-axis